Lecture 12

Markov-Chain Monte-Carlo Sampling

Instructor: Shibo Li

shiboli@cs.fsu.edu

Department of Computer Science Florida State University

Outline

- General ideas and Markov chain basics
- Metropolis-Hastings algorithm
- Gibbs sampling
- Hybrid Monte-Carlo

Outline

- General ideas and Markov chain basics
- Metropolis-Hastings algorithm
- Gibbs sampling
- Hybrid Monte-Carlo

· Given a probabilistic model

$$p(\mathcal{D}, \mathbf{z}) = p(\mathbf{z})p(\mathcal{D}|\mathbf{z})$$

 How to generate samples from the posterior distribution (the samples are NOT necessarily independent!)

$$\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N \sim p(\mathbf{z}|\mathcal{D})$$

- Given the posterior samples, what can we do?
- A lot of things
 - Approximate the (marginal) posterior posterior over any subset of variable (unlike message-passing)

$$p(\mathbf{z}|\mathcal{D}) \approx \frac{1}{N} \sum_{n=1}^{N} \delta(\mathbf{z} - \mathbf{z}_n)$$

Estimation of any interested statistics/moments

$$\mathbb{E}[f(\mathbf{z})] = \int f(\mathbf{z})p(\mathbf{z}|\mathcal{D})d\mathbf{z} \approx \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{z}_n)$$

Predictive distribution

$$p(\mathbf{y}^*|\mathcal{D}) = \int p(\mathbf{y}^*|\mathbf{z})p(\mathbf{z}|\mathcal{D})d\mathbf{z} \approx \frac{1}{N} \sum_{n=1}^{N} p(\mathbf{y}^*|\mathbf{z}_n)$$

MCMC: Pros and Cons

Pros

- Asymptotic convergence to the true posterior (note: deterministic approximation, such as VI, always has discrepancy with the true posterior)
- Robust to initialization
- Empirically best and often used as a gold-standard to test other approximate inference algorithms
- samples are more convenient to use than approximate distributions

MCMC: Pros and Cons

- Cons
 - Orders of magnitude slower than VB
 - Hard to diagnosis the convergence
 - Hard for parallelization (sequential sampling nature)
 - Hard for large-scale applications
 - Easily trap into single modes (this is the same as VB)

How to scale up MCMC to big data is a hot research topic!

Sample a sequence of variables using a Markov chain that converges to the desired posterior

$$\mathbf{z}_1 \to \mathbf{z}_2 \to \ldots \to \mathbf{z}_n \to \mathbf{z}_{n+1} \to \ldots$$

 $\mathbf{z}_{n+1} \sim p(\mathbf{z}_{n+1} | \mathbf{z}_n) \quad \lim_{n \to \infty} p(\mathbf{z}_n) = p(\mathbf{z} | \mathcal{D})$

Therefore, the MCMC samples are strongly correlated!

- A Markov chain is determined by
 - $-p(\mathbf{Z}_1)$: we do not care it much in MCMC sampling
 - Transition kernel: determines the speed of convergence

$$T(\mathbf{z}_n \to \mathbf{z}_{n+1}) = p(\mathbf{z}_{n+1}|\mathbf{z}_n)$$

if the kernel is the same for all n, the Markov chain is called homogeneous

The development of MCMC sampling is the art to design the transition kernel

- What distribution does a MC converge to ?
 - Invariant distribution

$$\int p^*(\mathbf{z}')T(\mathbf{z}'\to\mathbf{z})\mathrm{d}\mathbf{z}'=p^*(\mathbf{z})$$

We claim that $p^*(\cdot)$ is invariant to the transition kernel ${\it T}$ Also called stationary distribution

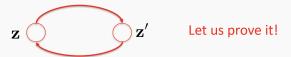
Obviously, we want to design a kernel to which the target posterior is invariant

How to examine invariance?

Sufficient condition (not necessary): detailed balance

$$p^*(\mathbf{z})T(\mathbf{z} \to \mathbf{z}') = p^*(\mathbf{z}')T(\mathbf{z}' \to \mathbf{z})$$

How does detailed balance lead to invariance?



An MC whose stationary distribution and transition kernel respect detailed balance is called *reversable*

- An MC can have multiple stationary distributions; converging to which one depends on $p(z_1)$
- We want our MC only converges to the desired posterior no matter what initial distribution is chosen!
- This property is called ergodicity: an ergodic MC only converges to one invariant (stationary) distribution

- Informally, in an ergodic chain, it is possible to go from every state to every state (not necessarily in one move)
- An ergodic chain is also called irreducible
- The invariant (or stationary) distribution of an ergodic chain is called the *equilibrium* distribution

- In MCMC sampling procedure
 - Invariance guarantees the samples will converge to the true posterior (unbiased)
 - Ergodicity guarantees the sample space can be fully explored (rather than partially)
- It can be shown that a homogeneous MC will be ergodic, subject only to weak restrictions on the invariant distribution and transitional kernels

- · Conceptually, the sampling contains two stages
 - Before burn-in: the MC has yet converged to the invariant distribution. In practice, we usually set up the maximum # of steps before burn-in, and usually various tricks to verify convergence empirically (e.g., look at trace plots).
 - After burn-in: the MC has converged. Then we generate the posterior samples. To reduce the strong correlation, we often take every M-th sample (e.g., M = 5, 10, 20). We also need to compute the effective sample size (ESS) to ensure the collected samples are enough.

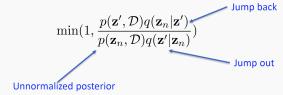
Outline

- General ideas and Markov chain basics
- Metropolis-Hastings algorithm
- Gibbs sampling
- Hybrid Monte-Carlo

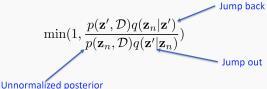
• A general framework for MCMC

- A general framework for MCMC
- In each step, we first use a proposal distribution to generate a candidate sample, and then decide whether to accept this new sample

- Denote the proposal distribution (not the transition kernel) by $q(\mathbf{z}'|\mathbf{z}_n)$, e.g., $\mathcal{N}(\mathbf{z}'|\mathbf{z}_n, \sigma^2\mathbf{I})$. Sample the the proposal \mathbf{z}' first.
- Accept \mathbf{z}' with probability



• Accept \mathbf{z}' with probability



omiomanzea posterior

How do we implement it in practice?

Sample a uniform R.V. u in [0,1], and test if

$$u \leq \exp \left\{ \min \left(0, \log p(\mathbf{z}', \mathcal{D}) + \log q(\mathbf{z}_n | \mathbf{z}') - \log p(\mathbf{z}_n, \mathcal{D}) - \log q(\mathbf{z}' | \mathbf{z}_n) \right) \right\}$$

• If we accept \mathbf{z}'

Set
$$\mathbf{z}_{n+1} = \mathbf{z}'$$

otherwise

Set
$$\mathbf{z}_{n+1} = \mathbf{z}_n$$

Note: the chain may contain many duplicated samples due to rejections

• Proof: MH guarantees the detailed balance Given arbitrary z_n and z_{n+1} , if $z_{n+1} \neq z_n$, z_{n+1} must be obtained from accepting a proposal

$$T(\mathbf{z}_{n} \to \mathbf{z}_{n+1}) = q(\mathbf{z}_{n+1}|\mathbf{z}_{n}) \min(1, \frac{p(\mathbf{z}_{n+1}, \mathcal{D})q(\mathbf{z}_{n}|\mathbf{z}_{n+1})}{p(\mathbf{z}_{n}, \mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n})})$$

$$= q(\mathbf{z}_{n+1}|\mathbf{z}_{n}) \min(1, \frac{p(\mathbf{z}_{n+1}, \mathcal{D})/p(\mathcal{D})q(\mathbf{z}_{n}|\mathbf{z}_{n+1})}{p(\mathbf{z}_{n}, \mathcal{D})/p(\mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n})})$$

$$= q(\mathbf{z}_{n+1}|\mathbf{z}_{n}) \min(1, \frac{p(\mathbf{z}_{n+1}|\mathcal{D})q(\mathbf{z}_{n}|\mathbf{z}_{n+1})}{p(\mathbf{z}_{n}|\mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n})})$$

Proof: MH guarantees the detailed balance
 Given arbitrary z_n and z_{n+1}, if z_{n+1} ≠ z_n, z_{n+1} must be obtained from accepting a proposal

$$T(\mathbf{z}_{n} \to \mathbf{z}_{n+1}) = q(\mathbf{z}_{n+1}|\mathbf{z}_{n}) \min(1, \frac{p(\mathbf{z}_{n+1}|\mathcal{D})q(\mathbf{z}_{n}|\mathbf{z}_{n+1})}{p(\mathbf{z}_{n}|\mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n})})$$

$$p(\mathbf{z}_{n}|\mathcal{D})T(\mathbf{z}_{n} \to \mathbf{z}_{n+1}) = p(\mathbf{z}_{n}|\mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n}) \min(1, \frac{p(\mathbf{z}_{n+1}|\mathcal{D})q(\mathbf{z}_{n}|\mathbf{z}_{n+1})}{p(\mathbf{z}_{n}|\mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n})})$$

$$= \min(p(\mathbf{z}_{n}|\mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n}), p(\mathbf{z}_{n+1}|\mathcal{D})q(\mathbf{z}_{n}|\mathbf{z}_{n+1}))$$

$$p(\mathbf{z}_{n+1}|\mathcal{D})T(\mathbf{z}_{n+1} \to \mathbf{z}_{n})$$

$$= \min(p(\mathbf{z}_{n+1}|\mathcal{D})q(\mathbf{z}_{n}|\mathbf{z}_{n+1}), p(\mathbf{z}_{n}|\mathcal{D})q(\mathbf{z}_{n+1}|\mathbf{z}_{n}))$$

Proof: MH guarantees the detailed balance

if
$$z_{n+1} = z_n$$

$$T(\mathbf{z}_n \to \mathbf{z}_{n+1}) = p$$
(reject the proposal) + p (proposal is \mathbf{z}_{n+1} and accept)

$$p(\mathbf{z}_n|\mathcal{D})T(\mathbf{z}_n \to \mathbf{z}_{n+1}) = p(\mathbf{z}_n|\mathcal{D}) \cdot [p(\text{reject the proposal}) + p(\text{proposal is } \mathbf{z}_{n+1} \text{ and accept})]$$

 $p(\mathbf{z}_{n+1}|\mathcal{D})T(\mathbf{z}_{n+1} \to \mathbf{z}_n) = p(\mathbf{z}_n|\mathcal{D}) \cdot [p(\text{reject the proposal}) + p(\text{proposal is } \mathbf{z}_n \text{ and accept})]$

• If we choose a symmetric proposal distribution

$$q(\mathbf{z}'|\mathbf{z}_n) = q(\mathbf{z}_n|\mathbf{z}')$$
 e.g., $\mathcal{N}(\mathbf{z}'|\mathbf{z}_n, \sigma^2\mathbf{I})$

Accept probability:
$$\min(1, \frac{p(\mathbf{z}', \mathcal{D})q(\mathbf{z}_n|\mathbf{z}')}{p(\mathbf{z}_n, \mathcal{D})q(\mathbf{z}'|\mathbf{z}_n)})$$

$$= \min(1, \frac{p(\mathbf{z}', \mathcal{D})}{p(\mathbf{z}_n, \mathcal{D})})$$

If the proposal increases the model probability, the accept rate is one!

Nightmare: random walk behavior

- We need to collect samples that fit the target posterior (e.g., their histogram should be more and more like the posterior). That means, we require many samples on the high-density regions and much less samples on the low-density regions
- However, if the proposals are generated like a random walk through the sample space, a great many proposals will be discarded (due to being in the low-density regions); and much computational cost is wasted

Nightmare: random walk behavior

Take the commonly used Gaussian proposal as an example

 So a key goal to design MCMC algorithms is to reduce random walk behavior!

Outline

- General ideas and Markov chain basics
- Metropolis-Hastings algorithm
- · Gibbs sampling
- Hybrid Monte-Carlo

Gibbs sammpling

- A special type of MH algorithm
- Use conditional distribution to sample each single (or subset of) random variable in the model
- Accept rate is always one
- A good choice when the conditional distribution is tractable and easy to draw samples

Gibbs sammpling

$$\mathbf{z} = [z_1, \dots, z_m]^{\top}$$
 $p(\mathbf{z}, \mathcal{D}) = p(z_1, \dots, z_m, \mathcal{D})$

Assume each $p(z_i|\mathbf{z}_{\neg i},\mathcal{D})$ is tractable and easy to generate samples

$$\mathbf{z}_{\neg i} = [z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_m]^{\top}$$

- Initialize $\mathbf{z}^{(1)} = [z_1^{(1)}, \dots, z_m^{(1)}]^{\top}$
- For t = 1.....T

— Sample
$$z_1^{(n+1)} \sim p(z_1|z_2^{(n)}, z_3^{(n)}, \dots, z_m^{(n)}, \mathcal{D})$$

-Sample
$$z_1^{(n+1)} \sim p(z_1|z_2^{(n)}, z_3^{(n)}, \dots, z_m^{(n)}, \mathcal{D})$$

-Sample $z_2^{(n+1)} \sim p(z_2|z_1^{(n+1)}, z_3^{(n)}, \dots, z_m^{(n)}, \mathcal{D})$

-Sample
$$z_3^{(n+1)} \sim p(z_3|z_1^{(n+1)}, z_2^{(n+1)}, \dots, z_m^{(n)}, \mathcal{D})$$

-Sample
$$z_j^{(n+1)} \sim p(z_j|z_1^{(n+1)}, \dots, z_{j-1}^{(n+1)}, z_{j+1}^{(n)}, \dots, z_m^{(n)}, \mathcal{D})$$

. . .

-Sample
$$z_m^{(n+1)} \sim p(z_j[z_1^{(n+1)}, z_2^{(n+1)}, \dots, z_{m-1}^{(n+1)}], \mathcal{D})$$

Gibbs sammpling

We can also partition the random variables into subvectors, and perform similar alternative sampling

$$\mathbf{z} = [\mathbf{z}_1, \dots, \mathbf{z}_t]^{ op}$$

$$p(\mathbf{z}_i | \mathbf{z}_1, \dots, \mathbf{z}_{i-1}, \mathbf{z}_{i+1}, \dots, \mathbf{z}_t, \mathcal{D})$$

This is called block Gibbs sampling

Gibbs sammpling: examples

Matrix factorization

	Movie 1	Movie 2	Movie 3	Movie 4
User 1	3.2	1.2	5	4.0
User 2	2.2	1.0	?	3.0
User 3	2.5	?	4.3	?

Gibbs sammpling: examples

	Movie 1	Movie 2	Movie 3	Movie 4
User 1	3.2	1.2	5	4.0
User 2	2.2	1.0	?	3.0
User 3	2.5	?	4.3	?

For each user i, introduce a k-dimensional latent feature vector \mathbf{u}_i For each movie j, introduce a k-dimensional latent feature vecto \mathbf{v}_j

$$p(\mathbf{u}_i) = \mathcal{N}(\mathbf{u}_i|\mathbf{0}, \mathbf{I})$$
 $p(\mathbf{v}_j) = \mathcal{N}(\mathbf{v}_j|\mathbf{0}, \mathbf{I})$

The rating is sampled from a Gaussian

$$p(R_{ij}|\mathbf{U},\mathbf{V}) = \mathcal{N}(R_{ij}|\mathbf{u}_i^{\top}\mathbf{v}_j,\tau)$$

Gibbs sammpling: examples

	Movie 1	Movie 2	Movie 3	Movie 4
User 1	3.2	1.2	5	4.0
User 2	2.2	1.0	?	3.0
User 3	2.5	?	4.3	?

The joint probability

$$p(\mathbf{U}, \mathbf{V}, \mathbf{R}) = \prod_{i} p(\mathbf{u}_{i}) \prod_{j} p(\mathbf{v}_{j}) \prod_{(i,j) \in \mathcal{O}} p(r_{ij} | \mathbf{u}_{i}^{\top} \mathbf{v}_{j}, \tau)$$

Gibbs sammpling: examples

$$p(\mathbf{U}, \mathbf{V}, \mathbf{R}) = \prod_{i} p(\mathbf{u}_{i}) \prod_{j} p(\mathbf{v}_{j}) \prod_{(i,j) \in \mathcal{O}} p(r_{ij} | \mathbf{u}_{i}^{\top} \mathbf{v}_{j}, \tau)$$

We can use Gibbs sampling to sequentially sample each \mathbf{u}_i and \mathbf{v}_j

The conditional distribution will be Gaussian!

• Proof: the target posterior is invariant to the chain

What is the transition kernel?

$$\begin{split} &T(\mathbf{z}^{(n)} \to \mathbf{z}^{(n+1)}) \\ &= p(z_1^{(n+1)}|z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D}) \\ &\cdot p(z_2^{(n+1)}|z_1^{(n+1)}, z_3^{(n)}, \dots, z_m^{(n)}, \mathcal{D}) \\ &\cdots \\ &\cdot p(z_m^{(n+1)}|z_1^{(n+1)}, z_2^{(n+1)}, \dots, z_{m-1}^{(n+1)}, \mathcal{D}) \end{split} \qquad \text{m steps}$$

Proof: the target posterior is invariant to the chain

if $\mathbf{z}^{(n)} \sim p(\mathbf{z}|\mathcal{D})$ respect the target posterior $T(\mathbf{z}^{(n)} \to \mathbf{z}^{(n+1)})$ $= p(z_1^{(n+1)}|z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D}) \qquad [z_1^{(n+1)}, z_2^{(n)}, \dots, z_m^{(n)}]^\top$ $\cdot p(z_2^{(n+1)}|z_1^{(n+1)},z_3^{(n)},\ldots,z_m^{(n)},\mathcal{D}) \qquad {}_{[z_1^{(n+1)},z_2^{(n+1)},z_3^{(n)},\ldots,z_n^{(n)}]^\top}$ $p(z_m^{(n+1)}|z_1^{(n+1)},z_2^{(n+1)},\ldots,z_{m-1}^{(n+1)},\mathcal{D})$ $[z_1^{(n+1)},\ldots,z_m^{(n+1)}]$ $\mathbf{z}^{(n+1)}$

Gibbs sammpling: correctness

- Note that you need also to ensure ergodicity
- A sufficient condition is that none of the conditional distributions be zero anywhere in the sample space (not hard for continuous distributions)
- If the sufficient condition is NOT satisfied, you must explicitly prove the ergodicity!

Gibbs sammpling: An instance of MH

- One iteration of Gibbs sampling is equivalent to m steps of MH updates, each step with accept prob. 1
- Let us look at one step, w.l.o.g., sample the first element (the other elements are the same)

Gibbs sammpling: An instance of MH

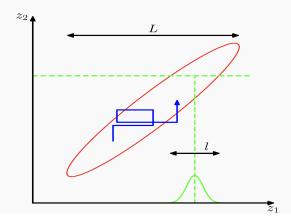
 Let us look at one step, w.l.o.g., sampling the first element (sampling the other elements are the same)

$$\mathbf{z}_n = [z_1^{(n)}, z_2^{(n)}, \dots, z_m^{(n)}]^\top \qquad \qquad \mathbf{z}' = [z_1^{(n+1)}, z_2^{(n)}, \dots, z_m^{(n)}]^\top$$
 Acceptance probability
$$\min \left(1, \frac{p(z_1^{(n+1)}, z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D})p(z_1^{(n)}|z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D})}{p(z_1^{(n)}, z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D})p(z_1^{(n+1)}|z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D})}\right)$$

$$\min \left(1, \frac{p(z_1^{(n+1)}|z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D})p(z_1^{(n)}|z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D})}{p(z_1^{(n)}|z_2^{(n)}, \dots, z_m^{(n)}, \mathcal{D})}\right) \qquad \qquad \qquad \mathbf{1}$$

Gibbs sammpling: inefficient exploration

 Although Gibbs sampling won't reject samples, it may still suffer from inefficient exploration due to strong correlations



Outline

- General ideas and Markov chain basics
- Metropolis-Hastings algorithm
- Gibbs sampling
- Hybrid Monte-Carlo

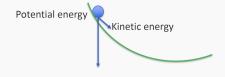
The MCMC algorithms we learned so far

- Random walk behavior --- waste a lot of samples
- High correlation between different RVs --- slow exploration
- Can we address both problems?

Hybrid Monte-Carlo Sampling

- Also called Hamiltonian MC
- An augmented approach
- Turn the probability to the energy of a physical system
- Augment with other physical properties
- Use the evolution of the physical system (usually described by a set of partial/ordinary differential equations)
- Theoretically can explore the sample space more efficiently, acceptance prob = 1
- Practically limited by the numerical integration error.

- Consider a small ball in a m-dimensional space, without any friction
- Given an initial position and momentum, how does the ball move?



- Characterize how the system evolves
- z(t): position vector at time t
- Potential energy: U(z(t))
- r(t): momentum vector at time t
- Kinetic energy: K(r(t))
- Total energy : H(z, r) = U(z) + K(r)

- z(t): position vector at time t
- Potential energy: *U(z(t))*
- r(t): momentum vector at time t
- Kinetic energy: K(r(t))
- Total energy : H(z, r) = U(z) + K(r)

Evolving:
$$\begin{aligned} \frac{\mathrm{d}z_i}{\mathrm{d}t} &= \frac{\partial H}{\partial r_i} & \mathbf{z} = [z_1, \dots, z_m]^\top \\ \frac{\mathrm{d}r_i}{\mathrm{d}t} &= -\frac{\partial H}{\partial z_i} & \mathbf{r} = [r_1, \dots, r_m]^\top \end{aligned}$$

How to map our probabilistic model into the system?

$$p(\mathbf{z}, \mathcal{D}) = p(z_1, \dots, z_m, \mathcal{D})$$

We take

$$U(\mathbf{z}) = -\log(p(\mathbf{z}, \mathcal{D}))$$

$$K(\mathbf{r}) = rac{1}{2} \mathbf{r}^{ op} \mathbf{M}^{-1} \mathbf{r}$$
 often takes identity/diagonal matrix

$$H(\mathbf{z},\mathbf{r}) = U(\mathbf{z}) + K(\mathbf{r})$$
 energy dist. $p(\mathbf{z},\mathbf{r}) \propto \exp \big(-H(\mathbf{z},\mathbf{r}) \big)$

What does it include?

$$U(\mathbf{z}) = -\log (p(\mathbf{z}, \mathcal{D}))$$

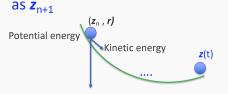
$$K(\mathbf{r}) = \frac{1}{2} \mathbf{r}^{\top} \mathbf{M}^{-1} \mathbf{r}$$

$$H(\mathbf{z}, \mathbf{r}) = U(\mathbf{z}) + K(\mathbf{r})$$

$$\frac{\mathrm{d}z_i}{\mathrm{d}t} = \frac{\partial H}{\partial r_i} \qquad \qquad \frac{\mathrm{d}z_i}{\mathrm{d}t} = [\mathbf{M}^{-1}\mathbf{r}]_i$$

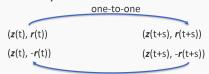
$$\frac{\mathrm{d}r_i}{\mathrm{d}t} = -\frac{\partial H}{\partial z_i} \qquad \qquad \frac{\mathrm{d}r_i}{\mathrm{d}t} = -\frac{\partial U}{\partial z_i}$$

 The key idea: use the current sample z_n and random sample of r, as the initial state of the Hamiltonian system; and then evolve the system to a time t, pick the z(t) as the proposal and test whether to accept it



Note: the proposal is not randomly generated; it is generated deterministically.

- Nice properties to guarantee the detailed balance
 - 1. Reversibility:



Why is it important?

$$p^*(\mathbf{z})T(\mathbf{z} \to \mathbf{z}') = p^*(\mathbf{z}')T(\mathbf{z}' \to \mathbf{z})$$

Negate momentum

Rigorously speaking, we need to first evolve the system, and then negate the momentum to obtain the new proposal

Now T is a delta function, we need to be able to jump back!

Numerical Integration

- Nice properties to guarantee the detailed balance
 - 2. Conservation: $\frac{\mathrm{d}H}{\mathrm{d}t}=0$ Totally energy does not change
 - 3. Volume preservation: Determinant of Jacobian is always 1

Volume does not change after transformation

General theorem (proof omitted)

Consider an arbitrary dynamic system Ψ_t Let $\emph{v=(z,r)}$ be the extended variable. Define $\mathbf{v}'=\Psi_t(\mathbf{v})$ If the following conditions are satisfied:

- Ψ_t is reversible under R, i.e., $\mathbf{v} = \Psi_t^{-1}(\mathbf{v}') = R(\Psi_t(R(\mathbf{v}')))$
- -R is an involution, i.e., $R \circ R(\mathbf{x}) = \mathbf{x}$
- The proposed sample $R(\mathbf{v}')$ is accepted with prob. $\min\{1, \frac{p(R(\mathbf{v}'))}{p(\mathbf{v})} | \det \frac{\partial R \circ \Psi_t(\mathbf{v})}{\partial \mathbf{v}} | \}$ otherwise keep \mathbf{v}

Then $p(\mathbf{v})$ is stationary distribution of the Markov chain generated by this Ψ_t and accept test

General theorem (proof omitted)

Consider an arbitrary dynamic system Ψ_t Let $\emph{v=(z,r)}$ be the extended variable. Define $\mathbf{v}'=\Psi_t(\mathbf{v})$ If the following conditions are satisfied:

- Ψ_t is reversible under R, i.e., $\mathbf{v} = \Psi_t^{-1}(\mathbf{v}') = R(\Psi_t(R(\mathbf{v}')))$
- R is an involution, i.e., $R \circ R(\mathbf{x}) = \mathbf{x}$ R is negating the momentum
- The proposed sample $R(\mathbf{v}')$ is accepted with prob.

$$\min\{1, \frac{p\big(R(\mathbf{v}')\big)}{p(\mathbf{v})} | \det \frac{\partial R \circ \Psi_t(\mathbf{v})}{\partial \mathbf{v}} | \} \quad \textit{otherwise keep \mathbf{v}} \quad \text{volume preservation}$$

Then $p(\mathbf{v})$ is stationary distribution of the Markov chain generated by this Ψ_t and accept test

Energy dist.

Apply the theorem to Hamiltonian system, the accept rate is always 1

However, (do not know solution)

$$U(\mathbf{z}) = -\log (p(\mathbf{z}, \mathcal{D}))$$

$$K(\mathbf{r}) = \frac{1}{2} \mathbf{r}^{\top} \mathbf{M}^{-1} \mathbf{r}$$

$$H(\mathbf{z}, \mathbf{r}) = U(\mathbf{z}) + K(\mathbf{r})$$

$$\frac{\mathrm{d}z_i}{\mathrm{d}t} = \frac{\partial H}{\partial r_i} \qquad \qquad \frac{\mathrm{d}z_i}{\mathrm{d}t} = [\mathbf{M}^{-1}\mathbf{r}]_t$$

$$\frac{\mathrm{d}r_i}{\mathrm{d}t} = -\frac{\partial H}{\partial z_i} \qquad \qquad \frac{\mathrm{d}r_i}{\mathrm{d}t} = -\frac{\partial U}{\partial z_i}$$

Numerical Integration

$$\frac{\mathrm{d}z_i}{\mathrm{d}t} = [\mathbf{M}^{-1}\mathbf{r}]_i \qquad \text{In practice we often choose} \\ \frac{\mathrm{d}r_i}{\mathrm{d}t} = -\frac{\partial U}{\partial z_i} \qquad \qquad \mathbf{M} = \mathrm{diag}[s_1,\dots,s_m]$$

Euler's method: choose step size ϵ , and # of step size ι

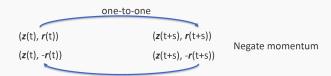
$$\begin{split} r_i(t+\epsilon) &= r_i(t) + \epsilon \frac{\mathrm{d} r_i(t)}{\mathrm{d} t} = r_i(t) - \epsilon \frac{\partial U(\mathbf{z}(t))}{\partial z_i} \end{split}$$
 Log joint probability
$$z_i(t+\epsilon) = z_i(t) + \epsilon \frac{\mathrm{d} z_i(t)}{\mathrm{d} t} = z_i(t) + \epsilon \frac{r_i(t)}{s_i}$$

- Euler's method is a first-order method $O(\epsilon)$
- In practice, people choose Leapfrog method, a second-order method $O(\epsilon^2)$

$$\begin{split} r_i(t+\epsilon/2) &= r_i(t) - (\epsilon/2) \frac{\partial U(\mathbf{z})}{\partial z_i} \\ z_i(t+\epsilon) &= z_i(t) + \epsilon \frac{r_i(t+\epsilon/2)}{s_i} & \text{introduce half-step} \\ r_i(t+\epsilon) &= r_i(t+\epsilon/2) - (\epsilon/2) \frac{\partial U(\mathbf{z}(t+\epsilon))}{\partial z_i} \end{split}$$

Leapgrog method (ϵ, L)

- Key properties
 - Reversibility under momentum negation

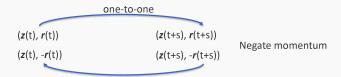


 Volume preservation: each leap-frog step is a shear transformation and preserves volumes

Question: does conservation still hold?

Leapgrog method (ϵ, L)

- Key properties
 - Reversibility under momentum negation



 Volume preservation: each leap-frog step is a shear transformation and preserves volumes

Question: does conservation still hold?

No, because it is a numerical approximation!

General theorem (proof omitted)

Consider an arbitrary dynamic system Ψ_t^{Leapfrog}

Let v=(z,r) be the extended variable. Define $\mathbf{v}' = \Psi_t(\mathbf{v})$ If the following conditions are satisfied:

- Ψ_t is reversible under R, i.e., $\mathbf{v} = \Psi_t^{-1}(\mathbf{v}') = R(\Psi_t(R(\mathbf{v}')))$
- -R is an involution, i.e., $R \circ R(\mathbf{x}) = \mathbf{x}$ R: momentum negation
- The proposed sample $R(\mathbf{v}')$ is accepted with prob. $\min\{1, \frac{p(R(\mathbf{v}'))}{p(\mathbf{v})}|\det \frac{\partial R \circ \Psi_t(\mathbf{v})}{\partial \mathbf{v}}|\}$ otherwise keep \mathbf{v}

Then $p(\mathbf{v})$ is stationary distribution of the Markov chain generated by this Ψ_t and accept test

Note that: due to the numerical error, the accept rate is not guaranteed to be 1

- We augment the latent variable z, with momentum variables r
- · Construct energy distribution

$$U(\mathbf{z}) = -\log(p(\mathbf{z}, \mathcal{D})) \qquad K(\mathbf{r}) = \frac{1}{2} \mathbf{r}^{\top} \mathbf{M}^{-1} \mathbf{r}$$
$$H(\mathbf{z}, \mathbf{r}) = U(\mathbf{z}) + K(\mathbf{r})$$
$$p(\mathbf{z}, \mathbf{r}) \propto \exp(-H(\mathbf{z}, \mathbf{r}))$$

• We construct a MC to generate samples from p(z, r)

• Step 1: generate new sample for r

$$r_i \sim \mathcal{N}(r_i|0,s_i)$$

(This is a Gibbs sampling step, why? Because the *r* and *z* are independent!)

 Step 2: start with current (z, r) and run Leap-frog for L steps with step size €, obtain (z', r'), set r' = -r', accept z' with probability

$$\min\{1, \exp\left(-H(\mathbf{z}', \mathbf{r}') + H(\mathbf{z}, \mathbf{r})\right)\} = \min\{1, \exp\left(-U(\mathbf{z}') - K(\mathbf{r}') + U(\mathbf{z}) + K(\mathbf{r})\right)\}$$
 otherwise keep z

(This is a Metropolis-hasting step)

Repeat Step 1 & 2 until get all the samples after burn-in

HMC-correctness

- Combining multiple Metropolis-hasting steps still yields one valid MH step, so the target posterior is invariant to the transitional kernel of the chain
- Ergodicity: typically satisfied because any value can be sampled from the momentum; only failed when the Leapfrog will produce periodicity; we can overcome this issue by randomly choosing e and L routinely.

HMC applications

- Apply to continuous distributions only, because Leapfrog needs the gradient information
- Very powerful MCMC algorithms.
- Usually much better than original Metropolis Hasting
- Gold-standard for inference in Bayesian neural networks.

• There is a trade-off for the choice (ϵ, L) in the Leapfrog

$$\min\{1, \exp\left(-H(\mathbf{z}', \mathbf{r}') + H(\mathbf{z}, \mathbf{r})\right)\}\$$

- Large ϵ and L will allow you to explore the space further away, but increase the numerical error and lower the acceptance rate
- Small
 e and L will be more accurate and so the acceptance rate increases, but the generated samples are not distant.
- In practice, it is very important to tune the two parameters!

What you need know

- Basic idea of MCMC
- Key concepts: transitional kernel, stationary/invariant/equilibrium distribution, detailed balance...
- Metropolis Hasting and random walk behavior
- Gibbs sampling
- Hybrid Monte-Carlo sampling
- You should be able to implement these algorithms!