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¢ General ideas and Markov chain basics
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MCMC: Goal

* Given a probabilistic model
p(D,z) = p(z)p(D|z)
* How to generate samples from the posterior distribution

(the samples are NOT necessarily independent!)

Z,,Z9,...,ZN ~ p(Z|D)
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MCMC: Goal ESL

* Given the posterior samples, what can we do?

* Alot of things

— Approximate the (marginal) posterior posterior over any
subset of variable (unlike message-passing)

G A
~ NZé(z—zn)

fo=il

— Estimation of any interested statistics/moments

Elf(2)] = [ st |Ddz~—2fzn

n=1

— Predictive distribution

1l N
p5°'1D) = [ ol Dp(aID)dz = 5 > ply*[2n)
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MCMC: Pros and Cons

* Pros

— Asymptotic convergence to the true posterior (note:
deterministic approximation, such as VI, always has
discrepancy with the true posterior)

— Robust to initialization

— Empirically best and often used as a gold-standard to test
other approximate inference algorithms

— samples are more convenient to use than approximate
distributions
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MCMC: Pros and Cons

* Cons
— Orders of magnitude slower than VB
— Hard to diagnosis the convergence
— Hard for parallelization (sequential sampling nature)
— Hard for large-scale applications
— Easily trap into single modes (this is the same as VB)

How to scale up MCMC to big data is a hot
research topic!
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MCMC: Basic ideas

Sample a sequence of variables using a
Markov chain that converges to the desired
posterior

Z1 23— ... 22y 2 Z4pi1 ...

Znt1 ~ P(Zpt1|Zn) 1M p(zn) = p(2|D)

Therefore, the MCMC samples are strongly correlated!
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Basic of Markov chains

* A Markov chain is determined by
— p(Z,): we do not care it much in MCMC sampling

— Transition kernel: determines the speed of convergence

T(zn — Zn+1) = p(Zn+1|2n)

if the kernel is the same for all n, the Markov chain is called homogeneous

The development of MCMC sampling is the art to design the
transition kernel
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Basic of Markov chains

* What distribution does a MC converge to ?

— Invariant distribution

We claim that p%(-) is invariant to the transition kernel T

Also called stationary distribution

Obviously, we want to design a kernel to which the target
posterior is invariant
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Basic of Markov chains

¢ How to examine invariance?

Sufficient condition (not necessary): detailed balance

p*(2)T(z — 2') = p™(2)T(2" — z)
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Basic of Markov chains

* How does detailed balance lead to invariance?

7 @ 7' Let us prove it!

An MC whose stationary distribution and transition
kernel respect detailed balance is called reversable
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Basic of Markov chains

* An MC can have multiple stationary distributions;
converging to which one depends on p(z;,)
* We want our MC only converges to the desired

posterior no matter what initial distribution is
chosen!

* This property is called ergodicity: an ergodic MC only
converges to one invariant (stationary) distribution
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Basic of Markov chains

* Informally, in an ergodic chain, it is possible to go
from every state to every state (not necessarily in
one move)

* An ergodic chain is also called irreducible

* The invariant (or stationary) distribution of an
ergodic chain is called the equilibrium distribution
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Basic of Markov chains

* In MCMC sampling procedure

— Invariance guarantees the samples will converge to the
true posterior (unbiased)

— Ergodicity guarantees the sample space can be fully
explored (rather than partially)

* |t can be shown that a homogeneous MC will be
ergodic, subject only to weak restrictions on the
invariant distribution and transitional kernels
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Basic of Markov chains

* Conceptually, the sampling contains two stages

— Before burn-in: the MC has yet converged to the invariant
distribution. In practice, we usually set up the maximum #
of steps before burn-in, and usually various tricks to verify
convergence empirically (e.g., look at trace plots).

— After burn-in: the MC has converged. Then we generate
the posterior samples. To reduce the strong correlation,
we often take every M-th sample (e.g.,, M =5, 10, 20). We
also need to compute the effective sample size (ESS) to
ensure the collected samples are enough.
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* Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm

* Ageneral framework for MCMC
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Metropolis-Hastings algorithm

* A general framework for MCMC

* |In each step, we first use a proposal distribution to
generate a candidate sample, and then decide
whether to accept this new sample
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Metropolis-Hastings algorithm

* Denote the proposal distribution (not the transition
kernel) by q(z'|2z,), e.g., N'(2|z,,0I). Sample the
the proposal 7z’ first.

* Accept 7' with probability
Jump back
p(e!, D)alanla )

P(Zn, D)Q(Zl|zn) )

\ Jump out

min(1,

Unnormalized posterior
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Metropolis-Hastings algorithm

* Accept 7z’ with probability

/ Jump back

 p(@, D)a(znl2)
i, D)e@ 2

/ Jump out

Unnormalized posterior

How do we implement it in practice?

Sample a uniform RV. v in [0,1], and test if

u < exp { min (0, log p(z’, D) + log q(zn |2) — log p(zn, D) — log q(2|zn)) }
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Metropolis-Hastings algorithm

* |f we accept 7'
/
Set Zp,11 — Z

otherwise
Set Zp+1 = Zp

Note: the chain may contain many duplicated samples due to rejections
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Metropolis-Hastings algorithm ESL

* Proof: MH guarantees the detailed balance

Given arbitrary z, and z,,,, , if z,,; # z,,, z,,; Mmust be
obtained from accepting a proposal

P(Zn+1,D)q(Zn|Zn11)
p(zn,D)q(zn+1|zn)

[p(zn-‘rla D)/p(IDXQ(Zn |Zn+1)
P(Zn, D) /p(D)q(zn+1]2n)

T(zn 7 zn+1) = Q(Zn+1|zn) min(l,

= q(Zn+1|2zn) min(1,

p(zn+1 |D)Q(Zn |Zn+1)
p(zn|'D)q(zn+1|zn)

= q(Z,41|Zn) min(1,
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Metropolis-Hastings algorithm

* Proof: MH guarantees the detailed balance

Given arbitrary z,and z,,,, , if z,,; # z,,, Z,,; must be
obtained from accepting a proposal

1 P(Zn+1|D)q(Zn|Zn+1)

T (2, — Zn+1) = q(Zn41|2,) min(1, D7 D) 22 1]20)

p(Z7L+1|D)Q(Zn‘Zn+1)
p(zn|’D)Q(zn+1|zn)

I|:| = min (p(zn|D)Q(Zn+1 |Zn)a p(zn+1 |D)Q(Zn|zn+1))
P(2011|D)T (2011 — 2n) |

P(2n|D)T(2, = Zn+1) = P(2n|D)q(Zn+1|2,) min(L,

= min (p(zn+1 |D)q(Zn|Zn+1), P(2r|D)q(Zn+1 |zn))
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Metropolis-Hastings algorithm

* Proof: MH guarantees the detailed balance

if Zh11 =2y

T(zn — znt1) = p(reject the proposal) +
p(proposal is z,,,; and accept)

P(2n|D)T (20 — 2n11) = p(zn|D)- [p(reject the proposal) +
IH p(proposal is z,,; and accept)]

P(Znt1|D)T (2041 — 20n) = p(z.|D)- [p(reject the proposal) +
p(proposal is z, and accept)]
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Metropolis-Hastings algorithm

* If we choose a symmetric proposal distribution

q(z'|zy,) = q(zn|2") eg,  N(2'|zy,0?])

| P#,D)g(nz)

Accept probability: ~ min( ’p(zn,D)q@r’\LZn))
. p(#,D)
= min (1,
( p(2n, D)

If the proposal increases the model probability, the accept
rate is one!
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Nightmare: random walk behavior

* We need to collect samples that fit the target
posterior (e.g., their histogram should be more and
more like the posterior). That means, we require
many samples on the high-density regions and much
less samples on the low-density regions

* However, if the proposals are generated like a
random walk through the sample space, a great
many proposals will be discarded (due to being in the
low-density regions); and much computational cost is
wasted
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Nightmare: random walk behavior

* Take the commonly used Gaussian proposal as an
example

ShE

* So a key goal to design MCMC algorithms is to
reduce random walk behavior!
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Outline

* Gibbs sampling
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Gibbs sammpling FSM

* A special type of MH algorithm

* Use conditional distribution to sample each single (or
subset of) random variable in the model

* Accept rate is always one

* A good choice when the conditional distribution is
tractable and easy to draw samples
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Gibbs sammpling

T
Z = [217"-72m] p(Z’D):p(Zla"'vz’"HD)

Assume each p(z;|z—;, D) is tractable and easy to

generate samples

i = Bl oo ) Bl Py oo
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Gibbs sammpling

Initialize 2V =[z", ..., 207

Fort=1,..T

A o, 5,2 D

R 77L7 )

—Sample

—Sample "Nk, Y, L, 20, D)

—Sample PSRN ) G SR Y (OJ »)

g )

—Samp|e Zg(‘n+1) ~ p(zj] £n+1),...z§714{1), J(Z-)l 27(;;)77))
n n+1 n+1 n+1
—Sample z,(n“) Np(2j|[25 ),zg ),..., £n 1)} D)
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Gibbs sammpling FSM

* We can also partition the random variables into sub-
vectors, and perform similar alternative sampling

7= [21,-- 24 "

p(Zi’Zh---,Zz‘71>zi+1,---;zt7®)

* This is called block Gibbs sampling
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Gibbs sammpling: examples

¢ Matrix factorization

User 1
User 2 2.2 1.0 ? 3.0
User 3 2.5 ? 4.3 ?
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Gibbs sammpling: examples

User 1
User 2 22 1.0 ? 3.0
User 3 2.5 ? 4.3 ?

For each user i, introduce a k-dimensional latent feature vector U;

For each movie j, introduce a k-dimensional latent feature vectorv ;

p(u,) :N(UZ|O,I) p(vj) :N(V7|O,I)
The rating is sampled from a Gaussian

p(R;|U, V) = N(R;;|u] v;,7)
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Gibbs sammpling: examples

User 1
User 2 2.2 1.0 ? 3.0
User 3 2.5 ? 43 ?

The joint probability

p(U,V,R)

:Hp(ui)Hp(vj) [T plrijhufv;m)

J (1,5)€0
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Gibbs sammpling: examples

p(U,V,R)

ZHP(Ui)Hp(Vj) H p(rij|lu) v;,7)

J (i,j)€O
We can use Gibbs sampling to sequentially sample each u; and v;

The conditional distribution will be Gaussian!
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Gibbs sammpling: correctness

* Proof: the target posterior is invariant to the chain
What is the transition kernel?

T(Z(n) s z(n+1))

e Rl O

1 m 3

p(zén+1)|z§n+1)’ Zén)7 oty D) m steps
'p(Z,(erl) |Z§n+1)’ Zénﬁtl)7 . Zﬁgjlla D)
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Gibbs sammpling: correctness

* Proof: the target posterior is invariant to the chain

if 2z ~ p(z|D) respect the target posterior

T(z™ — z("+D)

1 1 , ,
_ p(ZYH_ )lzén)’ o ’Zr(:LL),fD) i )72,571)’ 2T

(n+1)|_(n+1) _(n) n ! ;
: p(ZQ |z1 2 I EER) zﬁn)a D) [ZY'H),Z;“H),Z:(;”) soo ")]T
1 n+1 n+1 n+1 +1 =
'p(zr(r?—’_ )|Z§ )’Zé )a--'azr(n—l)vp) [Zin >,...,Z7(,'1'+1)]
z(n+l)
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Gibbs sammpling: correctness

* Note that you need also to ensure ergodicity

* A sufficient condition is that none of the conditional
distributions be zero anywhere in the sample space
(not hard for continuous distributions)

* |f the sufficient condition is NOT satisfied, you must
explicitly prove the ergodicity!
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Gibbs sammpling: An instance of MH FS]L[[

* One iteration of Gibbs sampling is equivalent to m
steps of MH updates, each step with accept prob. 1

* Let us look at one step, w.l.0.g., sample the first
element (the other elements are the same)
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Gibbs sammpling: An instance of MH FS]L[[

* Let us look at one step, w.l.0.g., sampling the first
element (sampling the other elements are the same)

[z(" , é"),...,zf,’[)] — Z = [Z§7L+l),2§n), .. .7z7(,7)]T
divide p(zén)a ey Z'S‘:LL)7 D)
Acceptance probability /
. p(z§"+1),z§"), .. zn?),D)p( YL)\zén), .. <">,D)
min (1, == ORI (D )
p(zl %2 zm”, D)p(2 lzg 7, .. ,D)

I

p(zgnﬂ)ké"),. Zy(,:L),'D)p( (”)|Z(n),...,Zy(:/),'D)) - 1
p(zi")\zén),...,zm),D)p n+1)| K L2 D o

min (1,
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Gibbs sammpling: inefficient exploration ESL

* Although Gibbs sampling won’t reject samples, it
may still suffer from inefficient exploration due to
strong correlations

225
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Outline

* Hybrid Monte-Carlo
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The MCMC algorithms we learned so far

* Random walk behavior --- waste a lot of samples

* High correlation between different RVs --- slow
exploration

* Can we address both problems?
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Hybrid Monte-Carlo Sampling

e Also called Hamiltonian MC

* An augmented approach

* Turn the probability to the energy of a physical system
* Augment with other physical properties

* Use the evolution of the physical system (usually
described by a set of partial/ordinary differential
equations)

e Theoretically can explore the sample space more
efficiently, acceptance prob =1

* Practically limited by the numerical integration error.
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Hamiltonian system

* Consider a small ball in a m-dimensional space,
without any friction

* Given an initial position and momentum, how does
the ball move?

Potential energy
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Hamiltonian system

* Characterize how the system evolves
* z(t): position vector at time t

* Potential energy: U(z(t))

* r(t): momentum vector at time t

* Kinetic energy: K(r(t))

* Total energy : H(z, r) = U(z) + K(r)
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Hamiltonian system

* Z(t): position vector at time t

* Potential energy: U(z(t))

* r(t): momentum vector at time t
* Kinetic energy: K(r(t))

* Total energy : H(z, r) = U(z) + K(r)

Evolving: % = o]
dt or; 7
dr; . oH L= [l T
E = 8zi
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Hamiltonian system FSM

* How to map our probabilistic model into the system?

p(ZaD) :p(Zh' . .,Zm,D)
* We take

U(z) = —log (p(z7 D))

1 _
K(I‘) = QI‘TM 11‘ often takes identity/diagonal matrix

H(z,x) = Uz) + K(r)  masiassy p(z, 1)  exp ( — H(z,r))

What does it include?
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Hamiltonian system

U(z) = —log( (z, D))
K(r) = M-lr H(z,r)=U(z)+ K(r)

dz;
dz _ 0H & M
dt 81"i ﬁ dt
E = 82% dt . 8Z'£
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Hamiltonian system FSU

* The key idea: use the current sample z, and random
sample of r, as the initial state of the Hamiltonian
system; and then evolve the system to a time t, pick
the z(t) as the proposal and test whether to accept it

as Z,,

Potential energy
Note: the proposal is not

2(t) =

O randomly generated; it is
generated deterministically.
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Hamiltonian system

* Nice properties to guarantee the detailed balance

1. Reversibility:

one-to-one
(2(t), r(t) (z(t+s), r(t+s))
Negate momentum
(2(t), -r(t)) (2(t+s), -r(t+s))
Rigorously speaking, we
. need to first evolve the
Why is it important? system, and then negate

the momentum to obtain
the new proposal

p(2)T(z > 2') = p"(2)T(z' — 2)

Now T is a delta function, we need to be able to jump back!

Spring 2025
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Numerical Integration

* Nice properties to guarantee the detailed balance

2. Conservation: % =0 Totally energy does not change

3. Volume preservation: Determinant of Jacobian is always 1

ul(t S), r T

Volume does not change after transformation
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General theorem (proof omitted) ESLU

Consider an arbitrary dynamic system W,
Let v=(z,r) be the extended variable. Define v/ = U, (v)

If the following conditions are satisfied:
— W, is reversible under R, i.e., v="¥;'(v') = R(¥,(R(v")))
— Risaninvolution, i.e., Ro R(x) = x

— The proposed sample R(v') is accepted with prob.

min{1, p(R((v )) el Oailtw) [}

otherwise keep v
p(v)

|det

Then p(v) is stationary distribution of the Markov chain
generated by this W, and accept test
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General theorem (proof omitted) ESLU

Consider an arbitrary dynamic system W,
Let v=(z,r) be the extended variable. Define v/ = W (v)

If the following conditions are satisfied:
— W, isreversible under R, i.e., v="0;"(v') = R(¥:(R(V")))

— Risaninvolution, i.e.,, Ro R(x) = x R is negating the momentum

— The proposed sample R(v’) is accepted with prob.

conservatio '
W(R(V ) \detaR Oamt(v’ |} otherwise keep vV volume preservation

p(v) v
Then p(v) is stationary distribution of the Markov chain
generat%gl by this W, and accept test

Energy dist.

Apply the theorem to Hamiltonian system, the accept rate is always 1
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However, (do not know solution)

U(z) = —log (p(z,D))
K(r) = %rTMAr H(z,r) =U(z)+ K(r)

dz; . oH le = [M—lr]i
dt a’l“i ﬁ de

d?"i oOH dri = _8U
dat 0z dt T
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Numerical Integration

le‘

—1
DETE [M r]i In practice we often choose
o M = diag[s Sm)
dT‘i_ oU = glS15-- 5 Sm

Euler’s method: choose step size € , and # of step size L

Log joint probabilit
dri() Q)
=ri(t) — )

ri(t+e) =ri(t)+e 7

dal) zi(t) + €

- n()
zit+e€) =z(t)+e a0 S;
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Leapgrog method

* Euler’s method is a first-order method O(e€)

* |In practice, people choose Leapfrog method, a
second-order method O(€2)

e+ e2) = (o)~ (/) 25 2
zi(t +€) =z (t)+ EM introduce half-step
U (z(t +¢€))

rlt+6) = rult+¢/2) = (/)=
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Leapgrog method (e, L)

* Key properties
— Reversibility under momentum negation
one-to-one

(2(t), r(t)) (z(t+s), r(t+s))

Negate momentum
(2(t), -r(t)) (z(t+s), -r(t+s))

— Volume preservation: each leap-frog step is a shear
transformation and preserves volumes

Question: does conservation still hold?
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Leapgrog method (e, L)

* Key properties

— Reversibility under momentum negation

one-to-one
(2(t), r(t)) (2(t+s), r(t+s))
Negate momentum
(2(t), -r(t) (2(t+s), -r(t+s))
v

— Volume preservation: each leap-frog step is a shear
transformation and preserves volumes

Question: does conservation still hold?  No, because it is a numerical
approximation!
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General theorem (proof omitted)

Leapfrog
Consider an arbitrary dynamic system Wy

Let v=(z,r) be the extended variable. Define v/ = ¥;(v)
If the following conditions are satisfied:
— W, is reversible under R, i.e., v="9;"(v') = R(¥\(R(v')))
— Ris aninvolution, i.e., Ro R(x)=x R: momentum negation
— The proposed sample R(v') is accepted with prob.
(Rv')), . OR 00\‘1:,(\/)

. p
min{1,
{ p(v)

|det [} otherwise keep v

Then p(v) is stationary distribution of the Markov chain
generated by this U, and accept test

Note that: due to the numerical error, the accept rate is not guaranteed to be 1
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HMC based on leap-frog

* We augment the latent variable z, with momentum
variables r

* Construct energy distribution
U(z) = —log (p(z,D)) K(r) = %rTM—lr
H(z,r) = U(z) + K(r)

p(z,r) < exp (— H(z,1))

* We construct a MC to generate samples from p(z, r)
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HMC based on leap-frog

» Step 1: generate new sample for r
i~ N(Ti|07 Si)

(This is a Gibbs sampling step, why? Because the r and z are independent!)

» Step 2: start with current (z, r) and run Leap-frog for
L steps with step size €, obtain (z/, r), setr =-r,
accept z’ with probability
min{1,exp (— H(z',r’) + H(z,1))} = min{l,exp (- U(z) — K(x') + U(z) + K(r))}

otherwise keep z

(This is a Metropolis-hasting step)

* Repeat Step 1 & 2 until get all the samples after burn-in
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HMC-correctness

* Combining multiple Metropolis-hasting steps still
yields one valid MH step, so the target posterior is
invariant to the transitional kernel of the chain

* Ergodicity: typically satisfied because any value can
be sampled from the momentum; only failed when
the Leapfrog will produce periodicity; we can
overcome this issue by randomly choosing € and L
routinely.
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HMC applications

* Apply to continuous distributions only, because
Leapfrog needs the gradient information

* Very powerful MCMC algorithms.
* Usually much better than original Metropolis Hasting

* Gold-standard for inference in Bayesian neural
networks.
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HMC discussion

* There is a trade-off for the choice (€, L) in the

Leapfrog
min{1,exp (— H(z',x’) + H(z,r))}

* Large € and L will allow you to explore the space
further away, but increase the numerical error and
lower the acceptance rate

* Small € and L will be more accurate and so the
acceptance rate increases, but the generated
samples are not distant.

* |n practice, it is very important to tune the two
parameters!

CIS 5930: Probabilistic Modeling Spring 2025



What you need know

e Basic idea of MCMC

* Key concepts: transitional kernel,
stationary/invariant/equilibrium distribution,
detailed balance...

* Metropolis Hasting and random walk behavior

* Gibbs sampling

* Hybrid Monte-Carlo sampling

* You should be able to implement these algorithms!
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