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Outline

* Neural networks and Back-propagation

* Stochastic optimization

* Bayesian neural networks

* Bayes by Backprop and reparameterization trick
* Auto-encoding variational Bayes

e @enerative adversarial networks
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Outline

* Neural networks and Back-propagation
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neural netowrks — very old topic

CIS 5930:

* 1943: McCullough and Pitts showed how linear threshold units can
compute logical functions

* 1949: Hebb suggested a learning rule that has some physiological
plausibility

e 1950s: Rosenblatt, the Peceptron algorithm for a single threshold neuron

* 1969: Minsky and Papert studied the neuron from a geometrical
perspective

e 1980s: Convolutional neural networks (Fukushima, LeCun), the
backpropagation algorithm (various)

* 2003-today: More compute, more data, deeper networks
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Biological neurons

The first drawing of a brain
cells by Santiago Ramén y
Cajal in 1899

Neurons: core components of brain and the
nervous system consisting of

1. Dendrites that collect information from
other neurons
2. An axon that generates outgoing spikes

Dendrite Axon
terminal

Node of 2
Ranvier

Schwann cell

myelin
nucleus
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Biological neurons

1 Modern artificial neurons are “inspired” by biological neurons
But there are many, many fundamental differences

Don’t take the similarity seriously (as also claims in the news
about the “emergence” of intelligent behavior)
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An aritifical neural network

i . Output
A function that converts inputs to outputs

defined by a directed acyclic graph
— Nodes organized in layers, correspond to
neurons
— Edges carry output of one neuron to
another, associated with weights

. )
To define a neural network, we need to Called the architecture

specify: of the network
— The structure of the graph / Typically predefined,

part of the design of
the classifier

* How many nodes, the connectivity
— The activation function on each node

— The edge weights : Learned from data
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Activation functions

output = activation(w’x + b)

Name of the neuron

Linear unit z
Threshold/sign unit sgn(z)

1
Sigmoid unit H—Tp(—z)
Rectified linear unit (ReLU) max (0, z)
Tanh unit tanh (z)

Many more activation functions exist (sinusoid, sinc, Gaussian, polynomial...)
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Suppose the true label for this example is a number y*

We can write the square loss for this example as:

1
L = =(y- y*)?
Z(y y*)
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Neural networks — A succinct representation ESL

An L-layer NN

dy x 1 dr-1x1

dg x 1
dp x 1

Hﬁ» — = |

Xg 7> X1 —...X—1 — X[,

7bitrary element-wise activation function

X; = O'(ijj—l)(l <Jj<L—-1) middlelayer

fout =x7, =WrXxr1 output layer

dp :input dim.
Wj 5 dj X dj_l
dL :output dim.
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Neural networks — A succinct representation ESL

X)) 7 24l T 00 02Gh—il % XL

iy = U(W]’X]’—l)(l < j < L—1) Middle layer
oty = 2 = W1 output layer
We can also recursively write
fw(Xo) = Igut — WLO'(WL_la'(. 50 O'(W1X0)))

W:{Wl,...,WL}
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Forward pass ESL

* To compute the output, you need to start from the
bottom level and sequentially pass each layer

Xo—> X1 —...X[-1 — X[,

This is called forward pass
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Back-propagation: Application of chain rule

In general, training NN is to minimize a loss
function LW, D) where D= {x®,yV),...,x", 4"}

For example, square loss:

N
(n) (n))]

n:l
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Back-propagation: Application of chain rule ESL

In general, training NN is to minimize a loss
function £W,D) where »={x®,yM),...,x™, ™M)}

1 N

_ % (n) _ x(’") 2
e.g. L(W,D) = Nﬂ;[y Fw ()] fiv(x0)

[
W, W w
X)— X{ — ...X[_1 =~ XL

<

How to efficiently compute gradient?
Do it in backward!
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Back-propagation: Application of chain rule ESL

L(W,D)

from the root

>
)
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Back-propagation

* We will not discuss the detail because
—Itis trivial and mechanical

—Nowadays, you never need to implement
BP by yourself. TensorFlow, PyTorch, ... will
do this automatically for you
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Outline

* Stochastic optimization
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Stochastic optimization FSM

* Suppose we aim to optimize an objective function
that can be viewed as an expectation

L(O) — IE“p(u) [9(07 u)]

* Then we can compute a stochastic gradient for
stochastic optimization

under certainty conditions
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Stochastic optimization FSM

* Suppose we aim to optimize an objective function
that can be viewed as an expectation

L£(0) = Ep(u)|9(0, )]

* Then we can compute a ‘stochastic gradient’for

stochastic optimization Y
VL(O) = VE,(u[9(8,u)] = Epuy[V9(6, u)

under certainty conditions
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Stochastic optimization: general recipe

* 1. Initialize @ randomly (or 0)

e 2.Fort=1..T
— Sample u from p(u)

Y« learning rate, many

— Calculate stochastic gradient Vg(0, u) tweaks possible
— Update 8 < 0 -y, Vg(8,u)
* 3.Return 8
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Convergence and learning rates

With enough iterations, it will converge almost surely
(i.e., with probability one)

Provided the step sizes are “square summable, but not
summable”

* Step sizes y, are positive

* Sum of squares of step sizes over t = 1 to oo is not infinite

* Sum of step sizes over t = 1 to o is infinity

. — _Yo — Yo
* Some examples: Yt = Ty—ot ory: = Ee
C
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Determine learning rate

* Learning rate is critical to convergence rate

* There are many works that develop learning rate
schedules

* The main-stream is momentum-based approaches

* Most popular approaches include ADAM, Adagrad,
Adadelta, etc.

* There are well developed libraries, and you do not
need to implement them by yourself.
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Why stochastic optimization is important

* It is the foundation of modern NN training

N
LOV, D)= LV, %, )

n=1

e If we partition the training data into mini-batches {B,, B,, ...} and each with
size B (e.g., 100)

N/B B N

L:(W,'D) = Z N Z Eﬁ(wvxnsyn)

u=1 neB,

N
:Ep<u>[§ > LV, %, yn)]
neB,

For each update we only need
to access a small mini-batch. So

stochastic gradient: Z VLW, X, Yn) it largely reduces the cost
neBy

Zz|w

Distribution: p(u = j) =
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Outline

* Bayesian neural networks
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Bayesian neural networks

e Bayesian version of NNs
* We place prior over the weights
* We use different distributions to sample the observed

output fW (XO)

[l
W, W W
X — X] — ...X[_1 = XL

fw(Xo) = Iout — WLO'(WL_la'(. 50 0(W1X0)))
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Bayesian neural networks

w
* Joint probability yIn CP
fW(Xn) XTL
7w w, |
Xno Xnl = ... 7 Xn,L-1 7 XnL Yn n
N
pW, D) = pW) [T p(¥nlfw(xn))
n=1
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Bayesian neural networks

w
* Joint probability yIn Q
fW(xn) Xn
o w |
Xno Xnl =7 ... =7 Xn,L-1 7 XpL y’I’L n
N
pW, D) = pW) [ ] p(ynl fv(xn))
n=1

Example of weight priors

Individual Gaussian ~ pOW) = [ M (wl0,1)
weW

Spike and slab:  p(W) = [] =N (wl0,0%) + (1 — m)N(w|0,03) Encourage sparsity
weWwW
e.g., n=0507=1,03=1e-3
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Bayesian neural networks

)4%
* Joint probability yTn CP
fw(Xn) Xn
W o 52 w )
Xn0 Xnl — ... 7 Xp, L-1 7 XpL yn n
p(W, D) = Hp Ynl fw(xn))

n=1
Example of likelihood
Gaussian:  P(Unlfw(xn)) = N (ynlfw (xn), 0?)
Bernoulli:  p(ynlfw(xn)) = Bern(ya|1/(1 4 exp (= fw(x,))))

exp([fw(x,,)]k) L(ynr=1)

Categorical: p(ynlfv(xn)) = H (2 exp([Byy (Xn)];) softmax

k
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Inference goal of BNNs

* Estimate the posterior distribution of NN weights

p(W|D)
* Estimate the predictive distribution

p(y*|x*, D) = / Py fi (x7)) POV |D) AW
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Outline

* Bayes by Backprop and reparameterization trick
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Bayes by Backprogation

* The golden-standard for BNN inference is HMC.
However, it is often too slow to be practical.

* We want to use variational inference, how?
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Bayes by Backprogation

* We want to use variational inference, how?

Introduce variational posterior and construct variational
evidence lower bound!

Estimate a free parameter
We choose fully factorized Gaussian &

:Hq(m HN iz, Log(1 + exp(ps)))

log(v(D) > £(6) = [ <mm% W 0= ((up)

= ZEq(u y[log p(w)] + ZEQO’V) [log p(yn|fw(xn))] + ZH (w;)

n=1
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Bayes by Backprogation

= Hq(wi) = HN(U),;|/1,,,¢,10g(1 + exp(pi)))

p(D|W)

tog(p(D)) = £(6) = [ a(w)iog L)y

N
7ZIE1<“ [log p(w; +ZE‘I(W [log p(yn|fw(xn) +ZH q(w;

e

Galssian
Analytical for entropy

Gaussian prior Totally intractable, Why? log (log(1 + exp(p;))2me)

How to maximize £(6) ?
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Bayes by Backprogation

* Stochastic optimization

* The key question: How to compute the stochastic
gradient for each

Eqow)[log p(ynlfw (xn))]

Can we use current parameters to sample W,
plugging into log and calculate the gradient?

W ~ q(WV|0) 0 = {(11ipi)}

ﬂ x Totally wrong!
V log p(yn| f3(xn))
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Bayes by Backprogation

* The reason is the distribution contains unknown
parameters, and so the expectation and derivative
are not interchangeable!

VoEqwie)log p(ynl fw (xn))] # Eqowvie)[Ve log p(yn|fw (xn))]

i
ﬁ D
0 / GOW18)108 Dy v (360) ) AWV
Why?
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Bayes by Backprogation

* The reason is the distribution contains unknown
parameters, and so the expectation and derivative
are not interchangeable!

VoEqwig)[log p(ynlfw(xn))] # Eqowie)[Ve log p(ynlfw (%n))]

i
m .
o / GOV|8)10g p(yn | v (%)) AW
Why?

Because the log likelihood
itself does not include
variational parameters!
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Reparameterization trick ESU

* The solution is to get rid of the unknown parameters
in the distribution under which we compute the
expectation. How?

qWw) = H q(w;) = HN(wi“M,log(l + exp(p;)))

w; = pi + €iv/1og(1 + exp(pi)) e ~N(0,1)

|

vec(W) = p + diag(/log(1 + exp(p))) - € =) W\: T(0,€),e ~ N(0,1)

Reparameterized Gaussian sample
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Reparameterization trick ESU

Eqwie)[log p(ynl fw (%n))] = Ep(e)[log p(yn|fr(6,¢) (Xn))]

i

/ 2(W18) Log p(yn| v (xn))dWW = / () ool e Eel)ie

!

Vo / OW18) log p(yn] v (xn))AW = Vo / 2(€) 108 D(un| Fr(e,0) %)) de

[l

VoE,ov|0) [log p(yn|fw (xn))]

- / Vop(€) 108 p(yn| fro.c) (%a))de

= / p(€)Vo log p(ynlfr(e.e (xn))de

=Ey(¢)[Ve log p(yn|free,e) (%n))]

CIS 5930: Probabilistic Modeling Spring 2025



Reparameterization trick ESU

IEq(W\G) [logp(yn |fW (Xn))] = lEp(E) [lng(yn |fT(0‘,€) (Xn))]

§

/ 2(W18) log plyn| F () )AW = / SO o L e Caae

i

Vo/q(W\B) log p(yn|fw (x5))dW = Ve/p(e) log p(yn| fr(,e)(xn))de

|

VoEqwe) [log p(yn|fw(xn))]

- / Vop(€) log p(un| 0. (xn))de

- / P(€) V0 108 0(u| (0,0 (%n))de
=Ep [Ve log p(yn|fr(e,e) (Xn)i]

Stochastic gradient ascent!
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Look back at ELBO

0) = Z Eq(wi) [logp(wi)] + Z H(Q(wl))
N/B

+ Z Z Ep(e)[log p(yYn|fr(o,e)(%n))]

nGB
J

Y

7 o(e) Z log p(yn| fr(e,¢)(Xn))]

TLEBu

Constant distribution
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Bayes by Back Propagation

e 1. Initialize @ randomly

e 2.Fort=1..T
— Sample u from p(u), €~ N(0,I)
— Calculate stochastic gradient vsa()) +% > Vollog p(ynl free.e(x0))]
—Update 0«6+ <Ve [a(6)] +% > V@UO%]J(%\fm.e)(xn))])

neBy,

e 3. Return q(W|0> = H./\/'(ur,z\uz.log(l+exp(pl)))
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Bayes by Back Propagation

* 1. Initialize @ randomly

e 2.Fort=1..T
— Sample u from p(u), €~ N(0,I)
— Calculate stochastic gradlent Vola(0 +— > Vollog p(yal fr(o,e(xn)]
— Update 6«0+~ - (Ve [a(6)] + E 3 Ve 10}-’{1’(?/"‘.;'I(SBAE)(XH))])

neB,
output of
e 3. Return q(W|0) = HN(([,*;\/L;,I()g(l + exp(pi))) the NN, so it
i needs BP!
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Predictive distribution

(67" D) = [ by 1w () pOVID)AW
~ [ 15w )avioyw
Still intractable, but we can use Monte-Carlo approximation

1 m
~ 27 2P, (X)) W~ a(W19)
j=1

We can also generate samples of y" to obtain an empirical (or
histogram) distribution
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Performance

Table 1. Classification Error Rates on MNIST. % indicates result
used an ensemble of 5 networks.

5
g | g
2 2
5 | B
Method * * L
Error
SGD, no regularisation (simardetal, 2003 | 800 | 1.3m| 1.6%
SGD, dropout (Hinton et al., 2012) ~1.3%
SGD, dropconnect (wan ctal., 2013) 800 | 1.3m| 1.2%"
SGD 400 [ 500k| 1.83%

800 | 1.3m| 1.84%
1200| 24m| 1.88%
SGD, dropout 400 | 500k| 1.51%
800 | 1.3m| 1.33%
1200| 2.4m| 1.36%
Bayes by Backprop, Gaussian 400 [ 500k| 1.82%
800 | 1.3m| 1.99%
1200| 2.4m| 2.04%
Bayes by Backprop, Scale mixture 400 [ 500k| 1.36%
800 | 1.3m| 1.34%
1200| 2.4m| 1.32%
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Performance

2.0+
;\"\ Algorithm
5 1.6 Bayes by Backprop
e
> Dropout
3 Vanilla SGD
F124

08 T T T T T
o] 100 200 300 400 500 600

Epochs

Figure 2. Test error on MNIST as training progresses.
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BBB: Summary

» State of the art NN inference, very popular

* The same scalability to SGD, but it can estimate
posteriors!

* Core idea : variational inference + reparameterization
trick

* This is also the foundation of nearly all the modern
Bayesian NN training.
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Outline

* Auto-encoding variational Bayes
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Auto-Encoder: Dimension Reduction

-

Original
input

Neural Network |

Encoder

La
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Compressed

Neural Network Il

Decoder

K

Reconstructed

representation

input

Provided by Will Badr
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Auto-Encoder

Dimension reduction is very important:
compression, denoise, ...

Compressed Data

Encode Decode

Provided by Will Badr
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Vanilla Auto-Encoder

Encoder Decoder sz ( )

Givendata D = {Xl, 500 ,XN}

N
Loss: D IIxn — fv, (o, (x0)) 2

n=1
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Variational Auto-Encoder FSU

pata: D = {xy,...,Xn}

@@—

Key idea: We view code h as the Iatent
random variables. We want to estimate
the posterior distribution of h; However,
the NN weights are considered as hyper-
parameters rather than RVs.

2
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Variational Auto-Encoder FSM

pata: D = {x3,...,xn}

Probabilistic Decoder

The model is only the decoder part

Xn Hp )p(xn|hy)
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Variational Auto-Encoder

Data: D = {x1,..., XN}

¥ I

)

Probabilistic Decoder

" Hp p(xn|hp)
X /
W N(h,|0,1) p(xnf>2(hn))
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Variational Auto-Encoder FSU

pata: D = {x3,...,Xn}

Probab|I|st|c Encoder

h,, Encoder is defined as the variational
posterior distribution of h,
X’)’L Q(H) = H qw, (hn|xn)
n n

CIS 5930: Probabilistic Modeling Spring 2025



Variational Auto-Encoder

Data: D = {x1,...,Xn}

h PrObabI|I$tIC Encoder n
n

Encoder is defined as the variational
posterior distribution of h,

_ We use NN output to
Xn Q(H) - H A% (h”|x") parameterize the
n n variational posterior,

namely, the encoder!

CIS 5930: Probabilistic Modeling
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Variational Auto-Encoder: Inference

¢ Maximize the variational ELBO

N ., p(1)p (x|, () FLBO is obviously
= gw, (hp|xp) log ——————=—"dh, intractable, why?
qw, (hnlxn)

N

n=1

p(hy, )P(Xn\fwz (hn))
=NE oy [log it Wa on /)
@l Eal) [ o8 aw, (hnlxn) ]

n=1

Use reparameterization trick + stochastic optimization
(on mini-batches)!
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N S

Concrete example

* Likelihood for continuous output

oy = Wy - EWao (hﬂ) + b
\ \_'_’

The 2 |ast layer

sz (hn )

P, = Waz - gy, (hy) + bao
Xn

p(alb) = p(alov, (1)) =[N (a1, din(exp(p,))

Gaussian with diagonal covariance
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N s

Concrete example

* Likelihood for binary output

hn_’@ —fw, (hn)

p(xalhn) = p(xn|fw, (hn)) = H[Bern([xn]ja([fW2 (hy)];)) ]

J

Xn

Bernoulli likelihood over each element

a(t) = 1/(1 + exp(-t))
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Concrete Example

* Gaussian encoder (most commonly used)

My = Wll *BWio (Xn) + b11

—h,,

M = Wi - 8Wio (XTL) + b12
aw, (hn|Xn) = N(hn|mna diag(eXp(nn)))

p(hn)P(Xn|fW2 (hn)) Very easy to use
] reparameterization trick!
g, (hnx5)

L= Z ]EQWl (hn|xn) [log
n=1
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VAE: summary ESL

* Convert auto-encoder estimation into a probabilistic
inference problem

* Trivial application of VI
* State-of-the-art
* Very popluar
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Outline

* @enerative adversarial networks
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Generative adversarial networks (GANs)

e Consider a uniform random variable X, How can we
make a transformation/mapping T such that the
transformed variable follows an arbitrary distribution?

* This is classical statistical question
* Suppose the target distribution has CDF to be F
* Then we should do T(X) = F1(X)
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Generative adversarial networks (GANs)

* Now let us consider an even harder problem

* Suppose | do NOT know the CDF of the target
distribution (this is often true in practice)

* | only have a set of samples from the target
distribution (e.g., a set of images)

* Can | learn such a mapping T, such that T(X) follows
the target distribution reflected by the given
samples? (In general, X can come from any
convenient distribution)

e That is what GAN aims for
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Generative adversarial networks (GANs)

* We will use an NN to represent the mapping. The
learning is to identify the parameters of the NN
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Generative adversarial networks (GANs)

* Key idea: Adversarial Training

* How: we will introduce two NNs, one is a generative
network (faker), the other is a discriminative network.
(police). We want to train an excellent faker through
grilling it by a stronger and stronger police.
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Generator (faker)
Gw, ()

I want to fake
the sample as
good as possible

CIS 5930: Probabilistic Modeling

Discriminator (police)

XX — Dy ()

| want to detect
the faked sample
as well as possible

Spring 2025



Generator (faker)

z Gl X
Can be generated from any The transformed sample,
easy distribution, uniform, ef(pe_Cteq i f°_”°W the bk
Gaussian white noise, ... distribution with the training
examples

Note that they do not need to have the same dimension!
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Generative adversarial networks (GANs)

Training examples

Discriminator (police)

Probability of being true

A candidate The probability that the
candidate can be considered
as a sample from the
distribution that produces the
training examples
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Generative adversarial networks (GANs)

Training examples

* Adversarial Training (Gaming)

Training objective: min—max problem
Hvl\}fl %X ‘C(le WQ) = EXNPdma [lOg DW2 (X)] + EZGPz(Z) [log(l - DW2 (GW1 (Z)))]

Empirical distribution constructed
from the training examples

So, we are searching for saddle points as solution, rather
than (local) maxima and minima.
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GANSs Training ESL

Mini-Max Stochastic Optimization
Randomly Initialize Wi, Whand other hyper-parameters
* Fort=1..T

— For k steps do
* Sample a minibatch of m samples Z1, .. .,Zm ~ p(2)
* Sample a minibatch of m samples xi,...,Xm ~ Pdata

* Update Discriminator with stochastic gradient ascent

m

Ws = Wa + k- Vo — > [log Dy, (x:) + log(1 — Dy, (Gw, (2:)))]

i=1
— Sample a minibatch m samples zi,..., 2z, ~ p,(2z)
— Update Generator with stochastic gradient descent

m

Wi &= Wi =1 - Vo, — > log(1 — Dy, (Gw, (z:)))
e

* Return Wi, W,

CIS 5930: Probabilistic Modeling
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GANs Training

lan Goodfellow, et. al. 2014
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Examples



Style transfer
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N < .

Many funny examples online....
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Applications

* Deepfake
* Style transfer
* Composition
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What you need to know

* What are Bayesian NNs?

* What are the key idea of BP and stochastic
optimization?

* How to conduct variational inference for BNNs?

* What is the reparameterization trick?

* The key idea of Bayes by Backprop, variational auto-
encoder and GANs

* You should be able to implement them (with
TensorFlow or pyTorch) now!
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