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About me

» Shibo Li, shiboli@cs.fsu.edu

» Probabilistic Machine Learning

» Assistant Professor, Department of Computer Science
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What is Machine Learning? FSU

"A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”

— Tom M. Mitchell, Machine Learning (1997)
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Machine Learning is the driving force of Al!
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Large-Language Models
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rative Models (GenAl)
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Sprouts in the shape of text ‘Tmagen’ coming out of a A photo of a Shiba Tnu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
fairytale book bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

‘Teddy bears swimming at the Olympics 400m Butter-
fly event.
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Machine Learning is EVERYWHERE!

Some things you
can ask me
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What is Probabilistic Learning

In a nutshell, probabilistic learning is branch of ML that
uses probabilistic (or Bayesian) principles for model
design and algorithm development.!

CIS 5930: Probabilistic Modeling Spring 2025



What is Probabilistic Learning

j—

Data Likelihood Posterior
Prior Distribution Distribution
p(D|0)
p(6) p(6|D)

Baye’s Rule:

p(0.D) _ p(6)p(D|6)
p(D) [ p(0)p(D|6)dE

p(6]D) =
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Why Probabilistic Learning ESU

» Unified, principled mathematical framework

'ﬂ: ‘[Posteriors |

D[6 ~ p(D|6) p(6|D)

» Uncertainty reasoning

l' Asthma: 60% Raining: 70%

\_J Heart disease: 30%

Healthy: 10%

Sunny: 30%
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Figure: “Neither Autopilot nor the driver noticed the white side of the
tractor trailer against a brightly lit sky, so the brake was not applied. The
high ride height of the trailer combined with its positioning across the
road and the extremely rare circumstances of the impact caused the
Model S to pass under the trailer, with the bottom of the trailer
impacting the windshield,” said Tesla in a statement after the crash last
year.
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Challenges

> Modeling

Rores
I yoo eans

2. yoo CANT,

- = 3. Yoo can
& 4. yoo canst

Complex
Knowledge/Assumptions

» Calculation

p(0)p(D|0)

v

Valid Prior
Distribution

MCMC sampling

POID) = 17 (6)p(D]6)a0

Variational approximations)

[ High dimensional integration7

Belief propagation
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In This Course

We will cover both the classical and
state-of-the-art approaches to deal with these
challenges!
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Overview of This Course

Warning

» This course is math intensive and requires a certain level of
programming (with Matlab, R or Python). Python
components may require TensorFlow and/or PyTorch. The
coding workload is not heavy, but requests mathematical
derivations and careful debugging.

» The workload is heavy (6-10 hours per-week)
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Overview of This Course

How will you learn?

» Attendance is Required. Take classes to follow the math,
understand the models and algorithms

» Derive the math details by yourself!

P Finish the homework assignments to deepen your
understanding

» Implement and debug the models and algorithms by
yourself!

» Using proper help is encouraged! (ChatGPT, Claude,
StackOverflow, MathStacks...). But plagiarism is
prohibited!
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Overview of This Course FS]L[I

This course focuses on the mathematic foundations, modeling and
algorithmic ideas in probabilistic learning

This course is not about

» Applying ML to specific tasks (e.g., image tagging and
autonomous driving)

» Using specific ML tools/libraries, e.g., scikit-learn and PyTorch

» How to program and debug, e.g., with Python, R or Matlab
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Overview of This Course FS]L[I

This course is an advanced course for students who want to study
ML in depth or quickly get to the frontier research of probabilistic
learning

This course is not about a preliminary course, e.g., entry-level
introduction of statistics. That means,

The content can be hard for some ones
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Do NOT take this course if

» You are struggling with linear algebra, calculus or basic
statistical concepts

» You are sick of mathematical symbols, derivations, proofs and
calculations

» You do NOT feel good in programming and debugging
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We Assume

» You are not scared of math, statistics, calculus and
calculations; you are happy with them!

» You are comfortable with abstract symbols and matrices
operations

» You can pick-up Matlab/Python/R quickly (even if you have
never used them before)

> You enjoy debugging, step in, step out, print, etc.

» You can quickly learn how to use TensorFlow or PyTorch or
Jax by following the documentation and searching for the
online examples
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and Most Important

» You have planed for enough efforts for this class (e.g., 6-10
hours per-week)
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You feel NOT right about any of these assumptions
> Seriously consider whether to take this course

» We want you to succeed. We do not want to make you feel
tortured.
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Course Information

» The course website contains all the detailed information
P> The course website is linked to my homepage

» My homepage: https://imshibo.com/

» Course Website: https://cis5930.github.io/

Spring 2025
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Basic Review

Note: this review is neither compressive nor in depth. Due to time
limit, this review is just to point out key concepts and
computational rules as the guidance. We list the references for
you to check out details for future usage.
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Matrix/Vector Derivative

e Standard notations
— non-bold letters: scalars

a‘7b7x7y7B7D7G7a777'°'
— Bold small letters: vectors

a,b,x,ylv,n,...
— Bold capital: matrices

AXZT,...
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Matrix/Vector Derivative

* scalar input, scalar output

y(z +dx) = y(x) + a - dz + (high-order terms)

g—Z:(u—Hiy:a-dx

* vector input, scalar output

x=(21,...,%,) ", dx=(dzy,...,dz,)"

y(x + dx) = y(x) + adx + (high-order terms) \ye use row-vector to
represent gradient

oy oy oy a/‘\

Ox 0z Oz,
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Matrix/Vector Derivative ESU

* In general, vector input, vector output

Y= W1 s Um) X = (gcl,...,xn)T, dx = (dacl,...,davn)—r

y(x + dx) = y(x) + Adx + (high order terms)

What is this? What’s size? 773 X 71,

Oy1 Oy1 0y1
oz dxo Oxy
P dy2  dy2 Oy2
Yy Oz Oxo Oz
=L . Tl =A — dy = Adx
ox : o, :
Ym  OYm OYm
oz Oxo e Ty
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Matrix/Vector Derivative

y(x + dz) = y(z) + a - dz + (high-order terms)
y(x + dx) = y(x) + adx + (high-order terms)
y(x 4+ dx) = y(x) + Adx + (high order terms)

In all the cases, {a, a, A} are derivativles. We define
(partial) gradient as the derivative

0

7

ox
This is consistent with the definition of Jacobian. However, we
need to be aware if output is scalar, the gradient is a row vector
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Matrix/Vector Derivative

* What is the benefit of this notation? We can apply
the chain-rule in a natural way

y:f(X), x:g(z)
y:mx1 x:nx1 z:qgx1
oy| |y [ox

/8Z_8X 0z

m X q
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Matrix/Vector Derivative

* Some literature uses the notation of derivative
transpose

8_y_AT

ox

The benefit is for scalar y, the gradient is a column vector. The
cons is when doing the chain rule, you have to multiply from right
to left. Why?
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Matrix/Vector Derivative

* In whichever case, the key to derive/compute the
derivative!

y(x + dx) = y(x) + Adx + (high order terms)

dy = Adx

* The general idea: recursively apply the chain rule
to get the target derivative!
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Matrix/Vector Derivative

* Take a scalar case as an example

1
X
dy =d(3z) +d <%) = ... Let’s do it together
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Matrix/Vector Derivative ESU

* How to apply chain rule for matrices/vectors

like scalar case, we have a set of basic rules in matrix
world as well; just keep applying them recursively

A = 0 (A is a constant)
d(aX) = adX
IX+Y) = IX+9IY
A(Tr(X)) = Tr(0X)

IAXY) = (0X)Y +X(9Y)
IXoY) = (0X)oY +Xo(dY)
IX®Y) = (0X)®Y +X (9Y)
oxXhH = —xHox)x!
A(det(X)) = det(X)Tr(X '9X)

d(In(det(X))) = Tr(X '9X)
XA (e
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Matrix/Vector Derivative

* Let’s do several examples

Yy = (x-l—b)T(x—I—b)

y=tr (I+xx")"")
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Matrix/Vector Derivative

* Commonly used references

1. Old and New Matrix Algebra Useful for Statistics, By Tom Minka, 2001
2.Matrix Cookbook

* Strongly suggest the tutorial made by our TM for more
examples

https://www.youtube.com/watch?v=artvpNFSFgw
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Basics Review ]FS]L[[

» Convex region/set in Euclidean space or more general vector
space

Vx,y e Sand Vt € [0,1],(1 —t)x+tye S

J o
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Basics Review

» The input domain X C R? is a convex region/set
> Convex function: f: X — R

Vxi1,x2 € X, Vt € [0,1] : f(tx1 4+ (1 — t)x2) < tf(x1) + (1 — t)f(x2)

tf (@) + (1= 0)f (w2)

F(tey+ (1= t)r2)

tzy + (1 —t)za Ty
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Basics Review

» Examples of convex functions

Single variable Multivariable

f(X) — X f(X) = a—;X +b
f(x) = —log(x) f(x) = §xTx

» How to determine a convex function?

» When differentiable, Vx,y € X

F(x) > f(y) + VF(y) (x—y)

» When twice differentiable, if Hessian matrix is positive
semidefinite (PSD)

He(x) = VVF(x) = 0, VxeR?

PSD: All eigenvalues of the Hessian are non-negative
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Basics Review FS]L[[

» Jensen's inequality (for convex functions), if X is a random
variable: X ~ p(X)

fF(E[X])) < E[f(X)]
F(Elg(X)]) < E[f(g(X))]

> Relates the value of a convex function of an integral to the
integral of the convex function
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Basics Review

* Convex conjugate (Fenchel's duality)

for an arbitrary convex function f(-), there exists a duality function g(-)

flw) = max Az — g(3)
g()) =max Az — f()

Jensen’s equality and convex conjugate plays the
key role in approximate inference
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