Lecture 5

Basic Concepts in Bayesian Decision and Information Theory

Instructor: Shibo Li

shiboli@cs.fsu.edu

Department of Computer Science Florida State University

Given **x**, want to predict **t**

t: Cancer, Stock price, Weather ...

- Inference step
 - Determine either p(t|x) or p(x,t) (from training data)

- Decision Step
 - For Given x, determine optimal t

Let us first consider the classification problem

- $t \in \{C_1, ..., C_K\}$
- Decision regions R_k : if x falls in , predict C_k
- Decision boundaries/surfaces: boundaries between different decision regions

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}.$$

Question: where shall we set the decision boundary to minimize the misclassification rate? Why?

• In general for K classes

$$p(\text{correct}) = \sum_{k=1}^{K} p(\mathbf{x} \in \mathcal{R}_k, \mathcal{C}_k)$$
$$= \sum_{k=1}^{K} \int_{\mathcal{R}_k} p(\mathbf{x}, \mathcal{C}_k) d\mathbf{x}$$
$$p(\mathcal{C}_k | \mathbf{x}) p(\mathbf{x})$$

How to find regions that maximize the probability of correctness?

• In general for K classes

$$p(\text{correct}) = \sum_{k=1}^{K} p(\mathbf{x} \in \mathcal{R}_k, \mathcal{C}_k)$$
$$= \sum_{k=1}^{K} \int_{\mathcal{R}_k} p(\mathbf{x}, \mathcal{C}_k) d\mathbf{x}$$
$$p(\mathcal{C}_k | \mathbf{x}) p(\mathbf{x})$$

Each x should be assigned the class having the largest posterior probability $p(C_k/x)$

Look Back

Minimum Expected Loss

• In practice, mistakes in predicting different classes may lead to different costs

Example: classify medical images as 'cancer' or 'normal'

Minimum Expected Loss

 Define a cost function, associate the cost of classifying k to j with L_{ki}

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$

 We want to find the decision regions R_j that minimize the expected loss

Minimum Expected Loss

 Define a cost function, associate the cost of classifying k to j with L_{ki}

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) \, d\mathbf{x}.$$

Rule: Assign each x to the class for which

$$\sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

is a minimum

Rejct Option

• When the largest posterior probability is still too small

Decision for Continuous Variables

- Inference step
 - Determine $p(\mathbf{x},t)$
- Decision step
 - For any given x, make optimal prediction y(x) for t

Decision for Continuous Variables

- Inference step
 - Determine $p(\mathbf{x},t)$
- Decision step
 - For any given x, make optimal prediction y(x) for t

Loss function

$$\mathbb{E}[L] = \iint L(t, y(\mathbf{x})) p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

The Squared Loss Function

Minimize
$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

The Squared Loss Function

Minimize
$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

$$y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$$

What you need to know

- What is the decision? What is the difference between the decision and inference?
- How to find optimal decision regions for classification?
- How to find optimal decisions for continuous variables?

Coding Theory

Let us start with discrete random variables.

Coding Theory

 How to represent the information contained in the random variables?

$$h(\mathbf{x}) \geq 0$$

$$h(\mathbf{x}, \mathbf{y}) = h(\mathbf{x}) + h(\mathbf{y})$$
 x,y are independent
$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$$

$$h(\mathbf{x}) = -\log \left(p(\mathbf{x})\right)$$

Entropy

The average among of information need to transmit

$$H(\mathbf{x}) = -\sum_{\mathbf{x}} p(\mathbf{x}) \log (p(\mathbf{x}))$$

Entropy

x	a	b	\mathbf{c}	d	e	\mathbf{f}	g	h
p(x)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{64}$	$\frac{1}{64}$	$\frac{1}{64}$

$$\begin{array}{lll} \mathrm{H}[x] & = & -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64} \\ & = & 2 \mathrm{\ bits} \end{array}$$

Entropy is also the average code length

Entropy Reflects Uncertainty

Maximum Entropy

• Consider a discrete R.V. with M possible status. We want to find the distribution has the the maximum entropy $H[p] = -\sum p(x_i) \ln p(x_i)$.

- Entropy is naturally defined on discrete random variables.
- But how about continuous variables?

• Let us divide x into bins of Δ

Mean-value theorem

$$\int_{i\Delta}^{(i+1)\Delta} p(x) \, \mathrm{d}x = p(x_i)\Delta$$

Entropy on discretized probability

$$H_{\Delta} = -\sum_{i} p(x_i) \Delta \ln (p(x_i) \Delta) = -\sum_{i} p(x_i) \Delta \ln p(x_i) - \ln \Delta$$

$$\sum_{i} p(x_i) \Delta = 1$$

$$\mathrm{H}_{\Delta} = -\sum_i p(x_i) \Delta \ln \left(p(x_i) \Delta \right) = -\sum_i p(x_i) \Delta \ln p(x_i) - \ln \Delta$$
 Goes to infinity Throw out it
$$\lim_{\Delta \to 0} \left\{ \sum_i p(x_i) \Delta \ln p(x_i) \right\} = \int p(x) \ln p(x) \, \mathrm{d}x$$

$$\mathrm{H}[\mathbf{x}] = -\int p(\mathbf{x}) \ln p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

- The term that is thrown out reflects that to specify a continuous variable very precisely requires many many bits
- Note: differential entropy can be negative!

• Given a continuous variable x with mean μ and variance σ^2 , which distribution has the largest entropy?

$$\int_{-\infty}^{\infty} p(x) dx = 1$$

$$\int_{-\infty}^{\infty} x p(x) dx = \mu$$

$$\int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx = \sigma^2$$

$$\begin{aligned} \max & & -\int_{-\infty}^{\infty} p(x) \ln p(x) \, \mathrm{d}x + \lambda_1 \left(\int_{-\infty}^{\infty} p(x) \, \mathrm{d}x - 1 \right) \\ & & + \lambda_2 \left(\int_{-\infty}^{\infty} x p(x) \, \mathrm{d}x - \mu \right) + \lambda_3 \left(\int_{-\infty}^{\infty} (x - \mu)^2 p(x) \, \mathrm{d}x - \sigma^2 \right) \end{aligned}$$

$$p(x) = rac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-rac{(x-\mu)^2}{2\sigma^2}
ight\}$$
 Gaussian distribution!

Conditional Entropy

Given x, how much information is left for y

$$H[\mathbf{y}|\mathbf{x}] = -\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) \, d\mathbf{y} \, d\mathbf{x}$$

$$\mathrm{H}[\mathbf{x},\mathbf{y}]=\mathrm{H}[\mathbf{y}|\mathbf{x}]+\mathrm{H}[\mathbf{x}]$$
 Prove it by yourself

Kullback-Leibler (KL) Divergence

Also called relative entropy

$$KL(p||q) = -\int p(\mathbf{x}) \ln q(\mathbf{x}) d\mathbf{x} - \left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x}\right)$$
$$= -\int p(\mathbf{x}) \ln \left\{\frac{q(\mathbf{x})}{p(\mathbf{x})}\right\} d\mathbf{x}.$$

If we use q to transmit information for p, how much extra information do we need

Kullback-Leibler (KL) Divergence

 KL divergence is widely used to measure the difference between two distributions

$$\mathrm{KL}(p\|q)\geqslant 0$$
 =0 iff p = q

Prove it with convexity

And Jensen's inequality

However, it is not symmetric!

$$\mathrm{KL}(p||q) \not\equiv \mathrm{KL}(q||p)$$

KL Divergence

- KL divergence plays the key role in approximate inference
- All the deterministic approximate methods aim to minimize the KL divergence between the true and approximate posteriors (or in the reversed direction)
- In general, we have alpha divergence
- We will discuss these in detail later

Mutual Information

How many information do the two random variables share?

$$I[\mathbf{x}, \mathbf{y}] \equiv KL(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y}))$$

$$= -\iint p(\mathbf{x}, \mathbf{y}) \ln \left(\frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$$

$$I[\mathbf{x}, \mathbf{y}] = H[\mathbf{x}] - H[\mathbf{x}|\mathbf{y}] = H[\mathbf{y}] - H[\mathbf{y}|\mathbf{x}]$$
 Prove it by yourself

What you need to know

- Definition of entropy
- How is differential entropy is derived
- Entropy is an indicator for uncertainty
- KL divergence and properties (especially asymmetric)
- Mutual information