Lecture 5

Basic Concepts in Bayesian Decision and Information Theory

Instructor: Shibo Li
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Department of Computer Science
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Given x, want to predict t

t: Cancer, Stock price, Weather ...

* Inference step
— Determine either p(t|x) or p(x,t) (from training data)

* Decision Step

— For Given x, determine optimal t
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Let us first consider the classification problem ESL

- t €{C, .. C}
* Decision regions R,: if x falls in, predict C;

e Decision boundaries/surfaces: boundaries between
different decision regions
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Minimum Misclassification Rate
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Minimum Misclassification Rate
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Question: where shall we set the decision boundary to
minimize the misclassification rate? Why?
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Minimum Misclassification Rate

* In general for K classes

K

p(correct) = Zp(x € R, Cr)

k=1
K

= Z[zkp(X7Ck)dx

=

p(Cr|x)p(x)

How to find regions that maximize the probability of
correctness?
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Minimum Misclassification Rate

* In general for K classes

K
p(correct) = Zp x € Rk, Cr)

:Z/ Xck

p(CkIX p(x)

Each x should be assigned the class having the largest
posterior probability p(C,/x)
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Look Back
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Minimum Expected Loss

FSU

* |n practice, mistakes in predicting different classes
may lead to different costs

Example: classify medical images as ‘cancer’ or ‘normal’

Decision
cancer normal

< cancer 0 1000
2 normal 1 0

CIS 5930: Probabilistic Modeling

Spring 2025



Minimum Expected Loss

* Define a cost function, associate the cost of
classifying k to j with L;

E[L] = g ; /Rj palos Cy)labe,

* We want to find the decision regions R; that
minimize the expected loss
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Minimum Expected Loss

* Define a cost function, associate the cost of
classifying k to j with L;

E[L] = %:23:/72 Li;p(x,Cr) dx.

* Rule: Assign each x to the class for which
Z Ly;jp(Ci|x)
k

is a minimum
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Rejct Option ESL

* When the largest posterior probability is still too small

1 0“ p(C1|x) p(Ca|)
P B o
0.0 /l ,\ >

reject region
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Decision for Continuous Variables

* Inference step
— Determine p(x,t)

* Decision step
— For any given x, make optimal prediction y(x) for t
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Decision for Continuous Variables

* Inference step
— Determine p(x,t)

* Decision step
— For any given x, make optimal prediction y(x) for t

Loss function

E[L] = // L(t,y(x))p(x,t)dxdt
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The Squared Loss Function

Minimize E[L] =/ {y(x) — t}?p(x, t) dx dt
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The Squared Loss Function

Minimize E[L] = / {y(x) — t}*p(x,t) dx dt

ﬂ

y(x) = E[t|x]
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What you need to know

¢ What is the decision? What is the difference
between the decision and inference?

* How to find optimal decision regions for
classification?

* How to find optimal decisions for continuous
variables?
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Coding Theory

e Let us start with discrete random variables
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Coding Theory ESL

* How to represent the information contained in the
random variables?

h(x) >0

h(x,y) = h(X) = h(y) x,y are independent
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Entropy ESL

* The average among of information need to transmit

Zp log )
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Entropy is also the average code length
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Entropy Reflects Uncertainty
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Maximum Entropy

* Consider a discrete R.V. with M possible status. We
want to find the distribution has the the maximum

entropy Hip| = Zp x;) Inp(z;).

|

H=- Zp(wz) Inp(z;) + A (ZP(%) — 1)

-

p(xl) = 1/M uniform distribution
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Differential Entropy

* Entropy is naturally defined on discrete random
variables.

* But how about continuous variables?
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Differential Entropy

e Let us divide x into bins of A

Mean-value theorem

(i+1)A
/ ) @ = sl

AN

Entropy on discretized probability
—Zp(a:i)Aln( (z)A) = Zp (z;))Alnp(z;) — InA
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Differential Entropy

= Zp(xi)Aln (z:)A) = Zp(a:l)Alnp( i) —InA

Goes to infinity
Throw out it

iiglo{Zp(wi)Alnp(wi)} = /p(w) Inp(z) dz

|
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Differential Entropy

* The term that is thrown out reflects that to specify a

continuous variable very precisely requires many
many bits

* Note: differential entropy can be negative!
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Differential Entropy

* Given a continuous variable x with mean ¢ and
variance o which distribution has the largest

entropy?
/ wla)dzl —

/OO wpl@)de = p
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Differential Entropy

- /Z p(z) Inp(z) dz + A </Z p(z)dz — 1)

Ao </Z ep(z) da — u) + s (/Z(m — 0)?p(z) dz — 02)

1 T —
p(z) = W €xXp {—( 205) } Gaussian distribution!
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Conditional Entropy

* Given x, how much information is left for y

Hly|x] = // p(y,x) Inp(y|x) dy dx

H[X, Y] = H[Y|X] + H[X] Prove it by yourself
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Kullback-Leibler (KL) Divergence

* Also called relative entropy

KLl = - [ p(x)lnq(x)dx( I p(x)lnp(x)dx)
L —/p(x)ln{f%} dx.

If we use g to transmit information for p, how much extra information
do we need
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Kullback-Leibler (KL) Divergence

* KL divergence is widely used to measure the
difference between two distributions

KL(pllg) 20 -offp=q

Prove it with convexity
And Jensen'’s inequality

* However, it is not symmetric!

KL(pllq) # KL(q||p)
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KL Divergence

* KL divergence plays the key role in approximate
inference

* All the deterministic approximate methods aim to
minimize the KL divergence between the true and
approximate posteriors (or in the reversed direction)

* In general, we have alpha divergence
¢ We will discuss these in detail later
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Mutual Information

How many information do the two random variables share?

p(x,y)llp(x)p (Y))

— x,y)In ) ) dx dy
// ( .Y)
Prove it by

I[X,y] = H[X] o H[X|y] o H[Y] = H[y|X] yourself

I[x,y]
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What you need to know

* Definition of entropy

* How is differential entropy is derived

* Entropy is an indicator for uncertainty

* KL divergence and properties (especially asymmetric)
* Mutual information
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